Model-Based Bayesian Reinforcement Learning in Complex Domains
نویسندگان
چکیده
Reinforcement Learning has emerged as a useful framework for learning to perform a task optimally from experience in unknown systems. A major problem for such learning algorithms is how to balance optimally the exploration of the system, to gather knowledge, and the exploitation of current knowledge, to complete the task. Model-based Bayesian Reinforcement Learning (BRL) methods provide an optimal solution to this problem by formulating it as a planning problem under uncertainty. However, the complexity of these methods has so far limited their applicability to small and simple domains. To improve the applicability of model-based BRL, this thesis presents several extensions to more complex and realistic systems, such as partially observable and continuous domains. To improve learning efficiency in large systems, this thesis includes another extension to automatically learn and exploit the structure of the system. Approximate algorithms are proposed to efficiently solve the resulting inference and planning problems.
منابع مشابه
Nonparametric Bayesian Approaches for Reinforcement Learning in Partially Observable Domains
The objective of my doctoral research is bring together two fields: partially-observable reinforcement learning (PORL) and non-parametric Bayesian statistics (NPB) to address issues of statistical modeling and decisionmaking in complex, realworld domains.
متن کاملThesis Summary: Nonparametric Bayesian Approaches for Reinforcement Learning in Partially Observable Domains
The objective of my doctoral research is bring together two fields: partially-observable reinforcement learning (PORL) and non-parametric Bayesian statistics (NPB) to address issues of statistical modeling and decisionmaking in complex, realworld domains.
متن کاملModel-Based Bayesian Reinforcement Learning in Large Structured Domains
Model-based Bayesian reinforcement learning has generated significant interest in the AI community as it provides an elegant solution to the optimal exploration-exploitation tradeoff in classical reinforcement learning. Unfortunately, the applicability of this type of approach has been limited to small domains due to the high complexity of reasoning about the joint posterior over model paramete...
متن کاملBayesian Models of Nonstationary Markov Decision Processes
Standard reinforcement learning algorithms generate polices that optimize expected future rewards in a priori unknown domains, but they assume that the domain does not change over time. Prior work cast the reinforcement learning problem as a Bayesian estimation problem, using experience data to condition a probability distribution over domains. In this paper we propose an elaboration of the typ...
متن کاملModel-based Bayesian Reinforcement Learning in Partially Observable Domains
Bayesian reinforcement learning in partially observable domains is notoriously difficult, in part due to the unknown form of the beliefs and the optimal value function. We show that beliefs represented by mixtures of products of Dirichlet distributions are closed under belief updates for factored domains. Belief monitoring algorithms that use this mixture representation are proposed. We also sh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008